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Abstract

A method is described by which the dispersion relations for a two-dimensional structural component can be predicted

from a finite element (FE) model. The structure is homogeneous in two dimensions but the properties might vary through

the thickness. This wave/finite element (WFE) method involves post-processing the mass and stiffness matrices, found

using conventional FE methods, of a segment of the structure. This is typically a 4-noded, rectangular segment, although

other elements can be used. Periodicity conditions are applied to relate the nodal degrees of freedom and forces. The

wavenumbers—real, imaginary or complex—and the frequencies then follow from various resulting eigenproblems. The

form of the eigenproblem depends on the nature of the solution sought and may be a linear, quadratic, polynomial or

transcendental eigenproblem. Numerical issues are discussed. Examples of a thin plate, an asymmetric laminated plate and

a laminated foam-cored sandwich panel are presented. For the last two examples, developing an analytical model is a

formidable task at best. The method is seen to give accurate predictions at very little computational cost. Furthermore,

since the element matrices are typically found using a commercial FE package, the meshing capabilities and the wealth of

existing element libraries can be exploited.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The propagation of waves in a homogeneous structure is of interest for many applications, especially at
higher frequencies. Examples include the transmission of structure-borne sound, shock response and statistical
energy analysis. Knowledge of the dispersion relations, group velocity, reflection and transmission
characteristics, etc., enables predictions to be made of disturbance propagation, energy transport and so on.

In simple cases, analytical expressions for the dispersion equation can be found (e.g. Refs. [1,2]). Examples
include one-dimensional structures such as rods and thin beams and two-dimensional structures such as thin
plates. For more complicated structures or at higher frequencies the analysis becomes more difficult or even
impossible, and the dispersion equation is usually transcendental. Finding all the real, imaginary and complex
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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solutions can be difficult and numerical solutions might be sought. Perhaps the underlying assumptions and
approximations break down—for example, for a plate, Kirchoff [1,2], Mindlin [1–3] or Rayleigh-Lamb [1,4]
theories might be required to accurately model the behaviour as frequency increases. On the other hand, the
properties of the cross-section of a homogeneous solid might be complicated. Examples include layered media
and laminated, fibre-reinforced, composite constructions. The latter might be modelled as single equivalent
uniform plates but at higher frequencies first (or higher-order) shear deformation theories [5,6] might be
necessary. The equations of motion then become very complicated at best.

Thus in such cases numerical approaches are potentially of benefit. In this paper a finite element (FE)-based
approach for the analysis of wave propagation in homogeneous, two-dimensional structures is described. The
properties can vary in an arbitrary manner through the thickness of the structure. In this wave/finite element
(WFE) method the mass and stiffness matrices of a conventional FE model of a very small segment (typically
rectangular) of the structure are post-processed by applying periodicity conditions for the propagation of a
time-harmonic disturbance through the structure. The approach is similar to that of Abdel-Rahman [7] for the
FE analysis (FEA) of periodic structures, except that in the present case the spatial periodicity is arbitrary.
Application of the periodicity conditions results in various eigenproblems whose solutions yield the dispersion
relations. Since conventional FEA is used, the full power of existing FE packages and their extensive element
libraries can be utilised.

For one-dimensional structures there have been applications of the WFE method for free [8] and
forced vibration [9], to rail structures [10] (and, in Ref. [11], using periodic structure theory for a track
section), laminate plates [8], thin-walled structures [12] and fluid-filled [13,14] pipes. Mencik and Ichchou [15]
applied the method to calculate wave transmission through a joint. There have been various applications of
FEA to spatially periodic one-dimensional structures. These include the earlier works of Orris and Petyt
[16,17], Abdel-Rahman [7] and others reviewed by Mead in Ref. [18]. Specific applications include railway
tracks [11], truss beams [19] and stiffened cylinders [20,21]. The general approach is in contrast to the
spectral finite element (SFE) method for one-dimensional waveguides (e.g. Refs. [22–24]) in which new
elements, with a space-harmonic displacement along the axis of the waveguide, must be derived on a
case-by-case basis. Other authors have applied periodic structure theory and FE to two-dimensional
structures, for example Ruzzene et al. [25], who considered cellular cored structures. Duhamel [26]
presents a similar approach for forced vibration of a two-dimensional structure. In Ref. [26], he enforces a
harmonic motion of the form exp(�iky) in one direction, so that the equation of motion reduces to
that for a one-dimensional structure and is subsequently solved using the WFE methods in Refs. [8,9].
The Green function is then found by evaluating an integral over the wavenumber k. This is a similar approach
to ‘‘two-dimensional’’ spectral element methods (e.g. Ref. [27]), where a harmonic dependence in one
dimension is imposed, so that a two-dimensional structure reduces to an ensemble of one-dimensional
waveguides.

This paper extends the WFE approach to two-dimensional homogeneous structures. In Section 2 the
formulation is described. Periodic structure theory is employed, although the periodicity is arbitrary.
A single segment of the structure is analysed using conventional FE methods. This is typically a rectangular
segment, meshed through the structure’s thickness with rectangular elements with only corner nodes.
Elements with other shapes or with interior or mid-side nodes can also be used. Periodicity conditions
are applied to develop eigenproblems of various forms—linear, polynomial or transcendental—whose
solutions yield the dispersion relations, group velocity and so on. The eigenvalue problems and
various numerical issues are discussed in Section 3. Section 4 contains numerical examples of thin
isotropic and orthotropic plates, for which analytical solutions are available, and laminated composite-
reinforced plates for which an analytical solution is not available. Further details and examples can be found
in Ref. [28].

2. The wave/finite element formulation

Consider a solid which is homogeneous in both the x and y directions, but whose properties may
vary through its thickness in the z-direction. An example is the laminate shown in Fig. 1(a), in which each
layer is uniform. Under the passage of a time-harmonic wave of frequency o any response variable w(x, y, z, t)
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Fig. 1. (a) Two dimensional homogeneous solid, (b) rectangular segment and (c) definition of nodes.
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varies as

wðx; y; z; tÞ ¼W ðzÞeiðot�kxx�kyyÞ (1)

where kx ¼ kcos y and ky ¼ ksin y are the components of the wavenumber k in the x and y directions and
where W(z) is some function through the thickness of the solid that describes the wave mode in terms of the
response variable w. The wavenumbers might be real (for propagating waves in the absence of damping), pure
imaginary (for evanescent waves) or complex (for oscillating, decaying waves). The propagating waves travel
in a direction which is at an angle y to the x-axis.

The aim is to estimate the dispersion relations between kx, ky and o, together with the variation of
displacements, internal forces, stresses and so on through the thickness. Analytical methods are
straightforward for simple structures such as thin plates [1,2], but become complicated for more complex
structures such as solids whose thickness is comparable to the wavelength [1–4] or laminates where higher-
order shear deformation theories might be required [5,6]. In the WFE approach a numerical solution is sought
from conventional FEA [29].

A small segment of the structure is taken as shown in Fig. 1(b). The segment is rectangular in the (x,y) plane
with sides of lengths Lx and Ly and is meshed through the thickness using 4-noded rectangular finite elements.
Such elements are common in FEA. The use of other elements is straightforward and is discussed in Section
2.2. The vector of degrees of freedom (dofs) q of the segment shown in Fig. 1(c) are given in terms of the nodal
dofs by

q ¼ qT1 qT2 qT3 qT4

h iT
(2)

where the superscript T denotes the transpose and where qj is the vector of the nodal dofs of all the elements
nodes which lie on the jth corner of the element. (Strictly, perhaps, this should be referred to as a hypernode
formed by concatenating all the element nodes through the thickness of the segment, although for simplicity it
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is referred to subsequently as node j.) Similarly, the vector of nodal forces is

f ¼ fT1 fT2 fT3 fT4

h iT
(3)

The mass and stiffness matrices M and K of the segment are found using conventional FE
methods. Typically a commercial package might be used so that existing element libraries can be
exploited. The equation of motion of the segment, assuming time-harmonic behaviour and neglecting
damping, is

K� o2M
� �

q ¼ f (4)

Now consider waves propagating through the continuum of Fig. 1(a). The solid is assumed to be modelled,
using FEA, as a two-dimensional array of identical rectangular segments as shown in Fig. 1(b). Under the
propagation of a wave as in Eq. (1), the nodal dofs are such that

q2 ¼ lxq1; q3 ¼ lyq1; q4 ¼ lxlyq1 (5)

where

lx ¼ e�imx ; ly ¼ e�imy ; mx ¼ kxLx; my ¼ kyLy (6)

Here mx and my are the propagation constants. Thus

q ¼ KRq1; KR ¼

I

lxI

lyI

lxlyI

8>>>><
>>>>:

9>>>>=
>>>>;

(7)

In the absence of external excitation, equilibrium at node 1 implies that the sum of the nodal forces of all the
elements connected to node 1 is zero. Consequently

KL

f1

f2

f3

f4

8>>><
>>>:

9>>>=
>>>;
¼ 0; KL ¼ I l�1x I l�1y I l�1x l�1y I

h i
(8)

Substituting Eq. (7) into Eq. (4) and premultiplying by KL gives

Kðlx; lyÞ � o2Mðlx; lyÞ
� �

q1 ¼ 0 (9)

where

K ¼ KLKKR; M ¼ KLMKR (10)

are the reduced stiffness and mass matrices, i.e. the segment matrices projected onto the dofs of node 1 under
the assumption of disturbance propagation as in Eq. (1). The eigenvalue problem of Eq. (9) can also be
written as

Dðo; lx; lyÞq1 ¼ 0 (11)

where D ¼ K� o2M is the reduced dynamic stiffness matrix (DSM). If the segment DSM is
partitioned as

D ¼

D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44

2
6664

3
7775 (12)
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then the eigenproblem (11) becomes

½ðD11 þD22 þD33 þD44Þ þ ðD12 þD34Þlx þ ðD21 þD43Þl
�1
x

þ ðD13 þD24Þly þ ðD31 þD42Þl
�1
y þD14lxly þD41l

�1
x l�1y

þD32lxl
�1
y þD23l

�1
x ly�q1 ¼ 0 (13)

If there are n dofs per node, the nodal displacement and force vectors qj and fj are n� 1, the segment mass
and stiffness matrices are 4n� 4n while the reduced matrices are n� n. Eqs. (9) and (11) give eigenproblems
relating lx, ly and o for the discretised structure, whose solutions give FE estimates of the dispersion relations
for the continuous structure.

2.1. Damping

The presence of viscous or structural damping can be included by the addition of viscous or
structural damping matrices C or K0. The dynamic stiffness matrix of the segment is now complex and
becomes

D ¼ Kþ ioC� o2M; and D ¼ Kþ iK0 � o2M, (14)

respectively.

2.2. Other FE implementations

The method can be applied to cases other than 4-noded, rectangular elements straightforwardly, so that the
full power of typical element libraries can be exploited.

2.2.1. Mid-side nodes

Mid-side nodes can be accommodated along the lines described by Abdel-Rahman [7] for periodic
structures. Consider the rectangular segment with mid-side nodes shown in Fig. 2(a). Defining the nodal
dofs as

q ¼ qT1 qT2 qT3 qT4 qTL qTR qTB qTT

h iT
(15)

the periodicity conditions become

q ¼ KR

q1

qL

qB

8><
>:

9>=
>;; KR ¼

I lxI lyI lxlyI 0 0 0 0

0 0 0 0 I lxI 0 0

0 0 0 0 0 0 I lyI

2
64

3
75
T

(16)

Equilibrium at node 1 gives Eq. (8) while equilibrium at the left and bottom mid-side nodes leads to

fL þ l�1x fR ¼ 0; fB þ l�1y fT ¼ 0 (17)

and hence

KL

f1

fL

fB

8><
>:

9>=
>; ¼

0

0

0

8><
>:

9>=
>;; KL ¼

I l�1x I l�1y I l�1x l�1y I 0 0 0 0

0 0 0 0 I l�1x I 0 0

0 0 0 0 0 0 I l�1y I

2
664

3
775 (18)

The matrices are again reduced as given by Eq. (10).
In Ref. [28] an approximation which reduces the size of the resulting eigenproblem is suggested by enforcing

further periodicity conditions between nodes 1, L and B. In this it is assumed that qL ¼ l1=2y q1; qB ¼ l1=2x q1 so
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Fig. 2. Other finite element implementations: (a) element with mid-side nodes; (b) element with internal dofs; and (c) triangular element.
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that the segment matrices are projected onto the dofs of node 1 only. This introduces some errors which seem
to be small in most, if not all, cases of interest.
2.2.2. Internal nodes

Suppose there are internal dofs defined at some internal node I as shown in Fig. 2(b). The dofs can be
partitioned into boundary and internal dofs such that

D
q

qI

( )
¼

f

0

� �
(19)

where it is noted that the nodal forces on the internal dofs are zero. The internal dofs can then be removed by
dynamic condensation [29].
2.2.3. Triangular elements

Consider the triangular segment with 3 nodes as shown in Fig. 2(c). A second, identical segment is
appended so that together they form a parallelogram with one side parallel to the x-axis and another parallel to the
direction y0 at an angle f to the y-axis. The periodicity conditions and transformation are the same except that now

q3 ¼ ly0q1; ly0 ¼ lyl
ðLy tan f=LxÞ
x (20)
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3. Forms of the eigenproblem

The eigenproblems of Eqs. (9) and (11) involve the three parameters lx, ly and o, and take various forms
depending on the physical nature of the solution being sought. As will be seen later, some eigensolutions are
artifacts of the spatial discretisation of the structure and are not representative of wave motion in the
continuum.

First, the matrices K and M, and C and K0 if damping is present, are real and symmetric in the absence of
gyroscopic terms. Consequently so, too, is the DSM D. By taking the transpose of Eq. (13) it follows that, for
real o, if (lx, ly) is a solution to Eq. (13) then so too is any combination of (lx, 1/lx) and (ly, 1/ly). These four
solutions represent the same disturbance travelling in the four directions 7y, p7y.

3.1. Free wave propagation in undamped structures: linear algebraic eigenvalue problem

To calculate the dispersion relations for free wave propagation in an undamped structure, the propagation
constants mx and my are given and the corresponding frequencies of free wave propagation are to be found. Eq.
(9) then becomes a standard, linear, algebraic eigenvalue problem in o2 to which there are thus n solutions. In
the undamped case mx and my are real and hence |lx| ¼ |ly| ¼ 1, representing waves that propagate through the

structure with a wavenumber k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
and in a direction y ¼ tan�1 ky/kx.

By considering the transpose-conjugate of Eq. (13) it can be shown [28,30] that the reduced stiffness and
mass matrices in Eq. (10) are positive definite Hermitian matrices. Therefore, for real mx and my, the n

eigenvalues o2 for which free wave propagation is possible are real and positive. The eigenvectors define the
wave modes. Although there are n solutions, not all represent wave motion in the continuous structure, some
being artifacts of the spatial discretisation and periodicity as discussed in Section 3.2.

If the structure is damped then real values for mx and my imply complex, decaying solutions for o2 or,
alternatively, for real o2 the solutions for mx and my are complex and the methods described in the following
two subsections must be used.

3.1.1. Group velocity

The group velocity

cg ¼
do
dk
¼

qo
qkx

iþ
qo
qky

j (21)

where i and j are unit vectors in the x and y directions, respectively. The group velocity is in the direction of the
normal to the curves in the (kx, ky) for constant o [31]. The derivatives can be found from the eigenvalue
problem of Eq. (9) since, for a given eigenvalue o2

j with mass-normalised left and right eigenvectors wj and /j

[32]

qo2
j

qkx

¼ wj

qK
qkx

� o2
j

qM
qkx

� �
/j (22)

with a similar expression for qo2
j =qky. In practice the derivatives in Eq. (21) might be estimated numerically

using a finite difference approach, as suggested in Ref. [12] for 1-dimensional waveguides. Using a central
difference approximation this involves evaluating o(kx7Dkx/2, ky), for example.

3.2. Frequency and one wavenumber known: quadratic eigenvalue problem

In the second class of eigenproblem the frequency o and one wavenumber, say kx, are given. This might
physically represent the situation where a known wave is incident on a straight boundary so that the (typically
real) trace wavenumber along the boundary is given and all possibly solutions for ky are sought, real,
imaginary or complex. Wave propagation in a closed cylindrical shell is a second example, where the
wavenumber around the circumference can only take certain discrete values. In this case, Eq. (13) becomes a
quadratic in ly and a quadratic eigenproblem results, for which there are 2n solutions.
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3.3. Frequency and direction of wave propagation known: polynomial and transcendental eigenvalue problems

In the third type of eigenproblem the frequency o and the direction of propagation y are specified. Hence lx

and ly are of the form

lx ¼ e�imx ; ly ¼ e�imy ;
my

mx

¼
Ly

Lx

tan y (23)

where mx and my might be complex, but their ratio is real and given. The nature of the eigenproblem depends
on whether this ratio is rational or irrational.

3.3.1. Ratio of propagation constants rational: polynomial eigenvalue problem

If the ratio my/mx ¼ m2/m1 is rational, m1 and m2 being integers with no common divisor, the propagation
constants can be written as mx ¼ m1s, my ¼ m2s. Putting g ¼ e�is, the eigenvalue problem (13) can be written
in the form

A0 þ A1gm1 þ A2gm2 þ A3g2m1 þ A4g2m2 þ A5gm1þm2
�
þA6g2m1þm2 þ A7gm1þ2m2 þ A8g2m1þ2m2

�
q1 ¼ 0 (24)

The matrices A are of order n� n so that Eq. (24) is a polynomial eigenvalue problem of order 2(m1+m2)
which has 2n(m1+m2) solutions for g. The problem can be recast as the standard linear eigenvalue problem

ðQ� gIÞZ ¼ 0 (25)

where

Q ¼

�A�1m Am�1 � � � �A
�1
m A1 �A

�1
m A0

I � � � 0 0

..

. . .
. ..

. ..
.

0 � � � I 0

2
66664

3
77775; Z ¼

gm�1q

..

.

gq

q

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

(26)

Clearly the order of the eigenvalue problem might be very large and hence there be very many solutions,
only some of which represent free wave propagation in the continuous structure, the rest being solutions
relevant only to the discretised problem. In principle this is not an issue since all but a few solutions lie far
enough from the origin in the complex kL plane that the finite element discretisation is known to be
inaccurate. However, in practice numerical solutions become prone to computational errors for large
2(m1+m2) and the method described for the transcendental eigenvalue problem are preferred. A fuller
discussion of these numerical issues, solution methods and derivation of the eigenvalue problem in Eq. (25)
can be found in Ref. [28].

3.3.2. Ratio of propagation constants irrational: transcendental eigenvalue problem

If my/mx is irrational, then the algebraic eigenvalue problem (25) cannot be formed. Instead, the eigenvalue
problem of Eq. (11), for given o, can be written as

Dðlx; lyÞq1 ¼ 0 (27)

where

lx ¼ e�ikLx cos y; ly ¼ e�ikLy sin y (28)

The problem thus reduces to finding the complex values of k for which

gðkÞ ¼ Dðlx; lyÞ
		 		 ¼ 0 (29)

It can be shown [28] that g(k) is a holomorphic function whose real and imaginary parts satisfy Laplace’s
equation. It is continuous and continuously differentiable with respect to k and a range of methods exist for
finding roots to Eq. (29). These include Newton’s method, Newton’s eigenvalue iteration method [33,34],
Powell’s method [35], the interval Newton method [36–38], by contour integration [39] and Muller’s method
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[40]. In the examples below and in Ref. [28] a variant of Powell’s method implemented as the function fsolve in
Matlab was used. If my/mx is irrational there is in general an infinity of solutions, of which only a few are of
interest, the remainder lying far from the origin in the complex k-plane.

3.4. Numerical issues

3.4.1. Finite element discretisation and dispersion errors

As with conventional FEA, FE discretisation errors become significant if the size of the element is too large
[29]. As a rule-of-thumb, there should be at least 6 or so elements per wavelength. These errors also depend on
the element aspect ratio and the direction of wave propagation. As in 1-dimensional WFE applications [41], if
the size of the element is too small then care must be taken in numerical computations because round-off
errors can occur if the dynamic stiffness matrix is to be calculated (i.e. if o2M



 

5 K


 

).

3.4.2. Spatial discretisation and periodic structure effects

In common with one-dimensional WFE applications, more significant issues arise because the original
structure is continuous while the WFE model is a lumped, discrete, spring-mass structure which is spatially
periodic with periods Lx and Ly in the x and y directions. For low frequencies, i.e. for wavelengths which are
long compared to the size of the element, there are no significant consequences of this and the WFE model
predicts the wavenumbers with good accuracy. However at higher frequencies, or for shorter wavelengths,
there are substantial differences and periodic structure phenomena arise [42–45]. However, at such frequencies
the accuracy of the FE description breaks down completely, so the issue is one of determining which solutions
to the eigenvalue problem are artifacts of the spatial discretisation and which are valid estimates of
wavenumbers in the continuous structure.

First, there is the issue of spatial discretisation and consequent aliasing effects. These arise because if, for a
given frequency, if (mx, my) is a solution to Eq. (11) for the propagation constants then so, too, is (mx+2mxp,
my+2myp) for any integral mx, my, since they yield the same values for lx and ly. Thus the wave modes and
frequencies are periodic functions of the propagation constants. This is a well-known effect for periodic
structures [42]. In practical applications this is not important because the FE discretisation is known to be
inaccurate for m4p/3 or thereabouts.

Secondly, periodic structures are known to exhibit a pass- and stop-band structure, in that disturbances can
propagate freely only in certain frequency ranges, otherwise they decay with distance [42–44]. For a two-
dimensional element with n dofs per node there will be n propagation surfaces. The bounds of these pass and
stop bands are related to the natural frequencies of the periodic element under various boundary conditions
[42–45].

It is worth noting that for elements with rigid body modes (i.e. those for which the stiffness matrix is
singular), o ¼ 0 is a cut-off frequency so that at least one wave must propagate from o ¼ 0, and this wave
must represent a wave in the continuous structure.

3.4.3. Sensitivity analysis and waves in the continuous structure

One issue might be to determine which numerical solutions for the discrete structure represent wave motion
in the continuous structure and which are artifacts of the spatial discretisation. This can be achieved by
determining the sensitivities of the estimated propagation frequencies or constants to the dimensions of the
element, since the bounds of the pass and stop bands depend on the natural frequencies of the element with
certain boundary conditions [42–45]. Thus increasing the size of the element both decreases the stiffness and
increases the mass, hence reducing the bounding frequencies. Wavenumber estimates which are periodic
artifacts are thus sensitive to the dimensions of the element whereas those which provide estimates of
wavenumbers in the continuum are insensitive to such changes. The sensitivities can be found by simple re-
meshing. Alternatively they can be evaluated analytically. For a given solution to Eq. (9), the derivative of the
eigenvalue o2 with respect to a parameter L is [32]

qo2
j

qL
¼ wj

qK
qL
� o2

j

qM
qL

� �
/j (30)
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The matrix derivatives or sensitivities are often available in commercial packages. If the consequent sensitivity

L

o2
j

qo2
j

qL
¼ Oð1Þ (31)

then the solution is a periodic artefact.

4. Numerical examples

In this section various numerical examples are presented to illustrate the application of the WFE method to
plates. Further examples of orthotropic, thick and laminated plates and more detailed discussion can be found
in Ref. [28].

4.1. Thin isotropic plate

Consider the flexural vibrations of a thin, isotropic plate lying in the x,y plane. The wavenumbers are such
that [1,2] ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
x þ k2

y

q
¼ �kf ;�ikf (32)

where

kf ¼

ffiffiffiffiffiffiffiffiffiffiffi
rho2

D

4

r
(33)

is the flexural wavenumber and where r, h and D are the density, thickness and bending stiffness, respectively.
To illustrate the WFE approach a square, 4-noded element of side Lx ¼ Ly ¼ L is taken, with 3 dofs at each
node, transverse displacement and the two rotations yx and yy. The shape function is a complete cubic with
two quartic terms, x3y and xy3. The element mass and stiffness matrices are well-known (see e.g. Ref. [29], but
note typographical errors). The non-dimensional parameters

m ¼
ffiffiffiffi
O
p

; m ¼ kL; O ¼ oL2

ffiffiffiffiffiffi
rh

D

r
(34)

are introduced.
The dispersion curves for real m, i.e. for free wave propagation, are shown in Fig. 3 for y ¼ 0. They are

found by the eigensolution of Eq. (9), which has 3 solutions for O2 for given m. The WFE solutions are periodic
functions of m with period 2p because of the spatial periodicity. There are 3 pass bands whose cut-off
frequencies, 0 and Oa,b,c,d, are indicated in the Figure. Also shown is the analytical solution for the continuous
plate. The first pass band (OoOa) of the WFE results gives accurate results for m up to p/3 or so. Fig. 4 shows
the three solutions for m as a function of O. The first is real in the pass bands and becomes complex in the stop
bands. The other two are imaginary, with one accurately representing the evanescent waves while the other is a
result of the FE discretisation. The first two eigenvalues are inaccurate for m4p/3 or so due to discretisation
errors and break down completely for m4p because of periodic structure phenomena. The wave mode shapes
(i.e. the right eigenvectors) for the first two solutions are more-or-less constant in the y-direction while the
third shows a substantial change in shape (the displacements along the edge are positive at the nodes and
negative between them).

Fig. 5 shows the relative error in the estimated frequency of propagation as a function of the direction of
propagation and for elements of various aspect ratios. The frequency corresponds to 400Hz in a 0.5mm thick
steel plate. The element is square. The error increases as the size of the element increases and is also a
maximum for propagation in the direction of the diagonal across the element. These results were found by
solving the transcendental eigenvalue problem to which there are multiple solutions. As one example, the
solutions in the region �10oRe{m}o10 for the square element for waves propagating in the direction y ¼ p/3
are shown in Fig. 6. The four analytical solutions are predicted accurately and there are numerous other
solutions for which |m| is large. The sensitivities with respect to the element length of the solutions which truly
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represent motion in the continuum are insensitive to the element length while those that are artefacts of the
spatial periodicity have sensitivities approximately equal to 1.

4.2. Thick isotropic plate

There are various plate theories, each of which involves various assumptions and approximations
concerning the distribution of stresses, strains or displacements across the plate. The most common finite
elements have 6 dofs per node and implement Mindlin-Reissner shell theory [1–3] in which shear deformation
and rotary inertia are included. At higher frequencies this model becomes inaccurate. An alternative in FEA is
to model the structure through the thickness using a number of solid elastic elements. Henceforth, 8-noded
elements with 3 displacement dofs per node are used in the numerical simulations. These were implemented as
SOLID45 elements in ANSYS.
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In this section an aluminium plate (E ¼ 7.1� 1010Nm�2; r ¼ 2.7� 103 kgm�3; n ¼ 0.329) of thickness
h ¼ 15mm is considered. It was meshed using 50 solid elements with Lx ¼ Ly ¼ 1mm, although fewer
elements provide accurate results in the frequency range considered. Results are presented in terms of the
dimensionless frequency

O ¼
ho
pcT

; cT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

2r 1þ nð Þ

s
(35)

Dispersion curves are shown in Fig. 7, with there being real, imaginary and complex conjugate solutions.
Only those solutions which propagate for Oo2.5 are shown. There are 3 propagating waves for Oo1—these
correspond to primarily flexural, shear and extensional waves. Higher order modes across the thickness cut on
at O ¼ 1, these being primarily anti-symmetric shear and extensional waves. A pair of complex conjugate
wavenumbers bifurcates into a pair of propagating waves with real wavenumbers around OE1.8. One of these
propagating waves has phase and group velocities of opposite sign. The wave mode shapes are discussed in
Ref. [28].
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4.3. Asymmetric laminated plate

Consider a laminated plate comprising two 5mm thick layers of GFRP with asymmetric ply-stacking of [0/
90]. Such a structure was considered by Chackraborty and Gopalakrishnan [46] using a spectral finite element
and dynamic stiffness approach. Material and geometric properties are taken from [46]. Fig. 8 shows the real-
valued dispersion curves for kx when ky ¼ 50m�1 together with the results using the method in Ref. [46]. The
WFE model involved two elements across the cross-section. The agreement is good at low frequencies and less
good as frequency increases. This is due at least in part to the fact that Chackraborty and Gopalakrishnan
used a first-order layer-wise laminate theory which becomes less accurate as frequency increases.

The WFE approach can be applied equally to laminates of arbitrary complexity, with an arbitrary number
of layers. One further advantage of the WFE approach is that the dispersion curves can be readily evaluated
for different directions of propagation. As an example, Fig. 9 shows the real-valued dispersion curves for
various values of y.
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Fig. 8. Asymmetric cross-ply laminate: real-valued dispersion curves, ky ¼ 50m�1: —— WFE results and yy theory of [43].
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4.4. Anti-symmetric cross-ply sandwich panel

The final example is an asymmetric, cross-ply laminated sandwich panel. The two outer skins comprise 4
orthotropic sheets of 0.5mm thick glass-epoxy. The stacking sequences of the top and bottom skins are [0/45/45/0]
and [45/0/0/45], respectively. The core is 10mm thick Rohacell foam (r ¼ 1100kg�3, E ¼ 0.18� 109Nm�2,
n ¼ 0.286). The material properties of each glass-epoxy sheet are: Ex ¼ Ey ¼ 5.4� 1010, Ez ¼ 4.8� 109;
Gxz ¼ Gyz ¼ 1.78� 109, Gxy ¼ 3.16� 109; nxz ¼ 0.06; r ¼ 2000, all in S.I. units. To model the structure 4
SOLID45 elements with Lx ¼ Ly ¼ 1mm were used for each skin and 10 elements used for the core.

Fig. 10 shows the dispersion curves for waves propagating in the direction y ¼ 0. Complicated behaviour is
again observed, with propagating waves cutting off with non-zero (real) wavenumber and there being
branches for which the phase and group velocities are of opposite sign.

The eigenvectors indicate the deformations under the passage of a wave, while the time average kinetic and
potential energies follow from the mass and stiffness matrices and the power associated with the individual
dofs follows from the nodal displacements and forces. These reveal the characteristics of the wave mode. For
example, Fig. 11 shows the deformations of the cross-section for the three propagating wave branches at
2 kHz. (These figures are not drawn to scale—for example in Fig. 11(a) the displacements in the x direction
have been magnified relative to those in the z-direction so that bending deformation in the skins can be more
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clearly observed.) Branch 1, i.e. that with the largest wavenumber (Fig. 11(a)) predominantly involves bending
of the skins with some shear in the core. The displacements in the y-direction are negligible, in the z-direction
are almost constant across the cross-section and in the x direction arise from shear and rotation of the
laminas. Branch 2 (Fig. 11(b)) is a shear wave, involving displacements primarily in the y-direction, while the
wave of branch 3 (Fig. 11(c)) is an axial wave, so that the displacements are primarily in the x direction,
although some Poisson contraction in the z direction can be observed.

These three low-frequency branches correspond more or less to familiar plate waves. At higher frequencies,
however, the behaviour becomes much more complicated. For example, Fig. 12 shows the deformation under
the passage of the waves in the 4th and 5th propagating branches at 10 kHz. Branch 4 (Fig. 12(a)) is the first
anti-symmetric shear mode, involving counterphase shear motion in the two skins and shear in the core.
Displacements in the x and z directions are small. Branch 5 (Fig. 12(b)) involves counterphase anti-symmetric
extensional motion in the skins, again with shear in the core. At higher frequencies still the motion is
complicated and the effects of the asymmetric construction become noticeable. For example, at 17.5 kHz the
propagating branch with the second largest wavenumber involves axial motion of the core (Fig. 12(c)),
together with Poisson contraction in the z-direction. There is also noticeable shear motion in the y-direction.
5. Concluding remarks

In this paper a wave/finite element (WFE) method for the analysis of wave motion in two-dimensional
structures was described. The structures are homogeneous in two dimensions but the properties might vary
through the thickness. The method involves post-processing the mass and stiffness matrices of a segment of
the structure, produced using conventional FE methods. The size of the FE model is very small. Emphasis was
placed on a 4-noded, rectangular segment, although other element types can be used. Periodicity conditions
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Fig. 11. Wave modes at 2 kHz (not to scale): (a) branch 1, displacements u and w in x and z directions; (b) branch 2, displacements v and w

in y and z directions; (c) branch 3, displacements u and w in x and z directions. The top and bottom surfaces of the skins and core and the

motion of various cross-sections are shown as functions of the distance x along the laminate at one instant of time.



ARTICLE IN PRESS

x
z

x
z

v
w

u
w

x
z

u
w

Fig. 12. Wave modes (not to scale): (a) branch 4 at 10 kHz, displacements v and w in y and z directions; (b) branch 5 at 10 kHz,

displacements u and w in x and z directions; (c) branch with 2nd largest wavenumber at 17.5 kHz, displacements u and w in x and z

directions. The top and bottom surfaces of the skins and core and the motion of various cross-sections are shown as functions of the

distance x along the laminate at one instant of time.

B.R. Mace, E. Manconi / Journal of Sound and Vibration 318 (2008) 884–902900
were then applied using the approach developed by Abdel-Rahman [7] in the context of FE analysis of
periodic structures. Eigenproblems of various forms then arise, the form depending on the nature of the
problem at hand. These might be linear, quadratic, polynomial or transcendental eigenproblems. The
solutions sought might be real-valued wavenumbers for propagating waves in an undamped structure, waves
with real, imaginary or complex wavenumbers and a given trace wavenumber in one direction, or waves of all
types propagating in a given direction. Numerical issues were discussed: the segment must be small enough to
avoid significant finite element discretisation errors and some solutions for the discretised structure are
artefacts of the spatial periodicity rather than being representative of wave motion in the continuum. Which of
these is the case can be readily determined by re-meshing or by sensitivity analysis.

Examples of thin and thick plates and various laminates were given. In the last two examples considered,
developing an analytical model is a formidable task which inevitably involves assumptions and
approximations. Even then, only a numerical solution to the dispersion equation is possible. The WFE
approach, however, merely involves the systematic post-processing of element matrices typically found using a
commercial FE package, in this case ANSYS. This is one of the main strengths of the WFE approach, in that
the meshing capabilities and the wealth of existing element libraries can be exploited. Accurate predictions of
the dispersion relations can be found at negligible computational cost.
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